Short Reports 1491

(rel. int.): 398 [M] $^+$ (100), 383 [M – Me] $^+$ (81), 260 [M – C₉H₁₄O] $^+$ (82), 245 [M – 138 – Me] $^+$ (40).

Compounds 2, 4 and 5. From the Sephadex LH-20 column, 268 mg of a mixture of 4 and 5 were obtained as white needles, mp 164–167° (EtOAc). IR $v_{\rm max}^{\rm KBr}$ cm⁻¹: 3440 (OH), 1700 (ketone). EIMS (probe 70 eV) m/z (rel. int.): 470 [M]⁺ (3), 452 [M - H₂O]⁺ (11), 437 [M - H₂O - Me]⁺ (15), 398 [M - C₄H₈O]⁺ (21), 383 [398 - Me]⁺ (48), 260 [398 - C₉H₁₄O]⁺ (30), 245 [260 - Me]⁺ (28), [43]⁺ (100). After the mixture was boiled in MeOH for 10 min the product was eluted through Sephadex LH-20 and compound 2 was obtained. After repeated crystallization from EtOAc and MeOH of the obtained material, 150 mg of white needles were obtained, mp 211–212°. IR $v_{\rm max}^{\rm KBr}$ cm⁻¹: 1700 (ketone), 1450, 1380, 1110, 1050, 1000, 910. EIMS (probe 70 eV) m/z (rel. int.): 484 [M]⁺ (5), 469 [M - Me]⁺ (4), 452 [M - MeOH]⁺ (65), 437 [452 - Me]⁺ (41), 413 [M - C₄H₇O]⁺ (100).

Oxidation of 4 and 5. Compounds 4 and 5 (2 mg) were reacted with 10 mg $\rm HIO_4$ in $\rm Et_2O$ for 30 min. TLC afforded 1.3 mg of 1, identical with an authentic sample ($^1\rm H$ NMR and TLC).

Acknowledgements—Parts of this work were supported by the Robert A. Welch Foundation Grant F-130 and the National Institutes of Health Grant GM-35710.

REFERENCES

- Bohlmann, F., Jakupovic, J., Ahmed, M., Grenz, M., Suding, H., Robinson, H. and King, R. M. (1981) Phytochemistry 20, 113
- Gao, F., Miski, M., Gage, D. A. and Mabry, T. J. (1985) J. Nat. Prod. 48, 316.
- Khuong-huu, F., Sangare, M., Chari, V. M., Bekaert, A., Devys, M., Barbier, M. and Lukacs, G. (1975) Tetrahedron Letters 22-23, 1787.
- Bohlmann, F., Misra, L. N., Jakupovic, J., King, R. M. and Robinson, H. (1985) Phytochemistry 24, 2029.
- Fattorusso, E., Santacroce, C. and Xaasan, C. F. (1985) Phytochemistry 24, 1035.

Phytochemistry, Vol. 25, No. 6, pp. 1491-1494, 1986. Printed in Great Britain. 0031 -9422/86 \$3.00 + 0.00 © 1986 Pergamon Press Ltd.

SPIROSTANOL GLYCOSIDES FROM AGAVE CANTALA

G. PANT*, O. P. SATI, K. MIYAHARA† and T. KAWASAKI†

Department of Chemistry, University of Garhwal, Srinagar (U.P.), 246 174, India; †Faculty of Pharmaceutical Sciences, Setsunan University, 45-1, Nagaotoge-cho, Hirakata, Osaka, 573-01, Japan

(Revised received 15 October 1985)

Key Word Index—Agave cantala; Agavaceae; saponins; spirostanol glycosides; schistosomiasis; Biomphalaria glabrata.

Abstract—Two spirostanol glycosides, cantalasaponins -2 and -4 were isolated from the methanolic extract of the rhizomes of Agave cantala and were characterized. The first glycoside was found to be lethal against Biomphalaria glabrata, the snail vector of the disease schistosomiasis, at a concentration of 7 ppm.

INTRODUCTION

Agave species are reported to have anticancer [1] and piscicidal [2] properties. Steroidal sapogenins [3] and saponins [4-6] have been reported from the leaves and fruits of A. cantala. We have shown that the rhizomes of this plant contain sapogenins [7], a hongguanggenin diglucoside [8] and other steroidal saponins. This paper describes the isolation and characterization of two heco-

genin glycosides (1 and 3) from the methanolic extract of the rhizomes. Compound 1 was found to be molluscicidal against *Biomphalaria glabrata* at a concentration of 7 ppm.

RESULTS AND DISCUSSION

Repeated column chromatography of the methanolic extract of the rhizomes gave cantalasaponins-2 (1), -3 (2), -4 (3) and -5 (4). Compounds 1 and 3 belonged to the 25R spirostane series (IR).

FD-mass spectrometry showed that the M_s of 1 and 3

^{*}To whom correspondence should be addressed.

1492 Short Reports

1 R¹ =
$$\beta$$
-D-xyl (pyr), R² = β -D-glu (pyr)
3 R¹ = β -D-xyl (pyr), R² = β -D-xyl (pyr) (1—4)- β -D-glu (pyr)
PS₂ R¹ = R² = H
PS₃ R¹ = H, R² = β -D-glu (pyr)

were 1048 $(m/z \ 1087 \ [M+K]^+, 1071 \ [M+Na]^+$ and 1049 $[M+H]^+$) and 1180 $(m/z \ 1203 \ [M+Na]^+)$, respectively. The lower mass regions of the spectra were almost identical. Fragment ions at $m/z \ 939 \ [M+Na-132]^+$, $909 \ [M+Na-162]^+$ and $754 \ [M-132-162]^+$ in 1 and at $1071 \ [M+Na-132]^+$ and $939 \ [M+Na-2\times 132]^+$ in 3 indicated the presence of a terminal pentose in both and a terminal hexose in the former.

Acidic hydrolysis of 1 and 3 gave hecogenin, and D-galactose, D-glucose and D-xylose in the ratio 1:2:1 and 1:2:2, respectively. Partial hydrolysis of 1 gave prosapogenins, PS_1 , PS_2 and PS_3 whereas 3 additionally gave PS_4 . The FD-MS of PS_3 contained a $[M+H]^+$ ion at m/z 917. PS_1 on hydrolysis gave galactose whereas PS_2 and PS_3 gave glucose also. Oxidation of PS_3 with sodium periodate followed by acidic hydrolysis gave glucose.

The permethylate of 1 (1a) prepared by Hakomori's method [9] on hydrolysis yielded 2,3,4-tri-O-methyl-D-xylose, 3,6-di-O-methyl-D-galactose (Wallenfel's [10] positive), 2,4,6-tri-O-methyl-D-glucose and 2,3,4,6-tetra-O-methyl-D-glucose. The permethylate of 3 (3a) gave the first three sugars and 2,3,6-tri-O-methyl-D-glucose. PS₂ permethylate gave 2,3,4,6-tetra-O-methyl-D-glucose and 3,4,6-tri-O-methyl-D-glucose PS₃ permethylate additionally furnished 2,4,6-tri-O-methyl-D-glucose. PS₄ permethylate gave sugars identical to those given by 1a. The identities of the methylated sugars were established by comparison with authentic samples [11-13].

The points of linkages in the glycone parts in PS₂, PS₃, 1 and 3 were further supported by the application of glycosylation shifts [14, 15]. ¹³C chemical shifts of methyl pyranosides of β -D-galactose, β -D-glucose and β -D-xylose in pyridine- d_5 [14-16] and those of hecogenin [17] are available.

The δ values of C-3 and C-5 of the sugars in the $^{13}\text{C NMR}$ spectra of PS₃ and 1 confirmed the presence of β -linkages [14] at the anomeric carbons. β -Linkages in 1 and 3 were further supported by their $^{1}\text{H NMR}$ spectra and by the application of Klyne's rule [18].

Thus, 1 and 3 were characterized as 3-O-[$\{\beta$ -D-glucopyranosyl(1 \rightarrow 2)} $\{\beta$ -D-xylopyranosyl(1 \rightarrow 4)}- β -D-glucopyranosyl]-(25R)- 5α -spirostan-12-one-3 β -ol and 3-O-[$\{\beta$ -D-xylopyranosyl(1 \rightarrow 4)- β -D-glucopyranosyl(1 \rightarrow 3)- β -D-glucopyranosyl

 $(1 \rightarrow 2)$ { β -D-xylopyranosyl(1 \rightarrow 4)}- β -D-galactopyranosyl]-(25 R)-5 α -spirostan-12-one-3 β -ol, respectively.

EXPERIMENTAL

Mps: uncorr.; FDMS: JEOL JMS DX-300/JMA-3500 system (E.H.C.: 22-23 mA; cathode voltage: -5 kV, accelerating voltage: 2 kV, ion multi. voltage: 2.5 kV); ¹H NMR (100 MHz) and ¹³C NMR (25 MHz): C₅D₅N with TMS as an internal standard; CC: silica gel (BDH, 60-120 mesh) (i) and Lobar LiChroprep Rp-8 (Merck, size B) (ii); TLC: Kieselgel 60 G (Merck) (iii) and DC-Alufolien Kieselgel 60 F₂₃₄ (Merck) (iv); HPTLC: Fertigplatten Rp-8 F₂₃₄ (Merck) (v). The spots on TLC were visualized by spraying with 10% alcoholic H₂SO₄ followed by heating. PC: Whatman No. 1 paper using the descending mode and aniline hydrogen phthalate as the developer. Colorimetric estimations [19]. The following solvent systems were used: (A) CHCl₃-MeOH (9:1); (B) MeOH-H₂O (C) MeOH-H₂O (4:1); (D) CHCl₃-MeOH-H₂O (13:4:2); (E) petrol (60-80°)-EtOAc (1:1); (F) C_6H_6 -Me₂CO (4:1); (G) EtOAc- $C_5H_5N-H_2O$ (10:4:3) and (H) n-BuOH-EtOH-H2O (5:1:4).

Isolation of saponins. The saponin fraction (6.5 g) from a MeOH extract of the rhizomes of A. cantala (collected from Srinagar, U.P.) gave cantalasaponin 1 [8] and a complex mixture which on repeated CC [(i), solvent A] gave two fractions (1, 2.1 g and 2, 2.8 g), each of which crystallized as colourless flakes (aq. EtOH) and appeared homogeneous on TLC.

Fraction 1. FDMS m/z (rel. int.): 1071 (76.1), 1057 (60.5), 903 (100), 755 (60.5), 431 (19.2), 417 (9.6), 399 (20.1).

Fraction 2. FDMS m/z (rel. int.): 1203 (23.3), 1189 (26.2), 1057 (63.1), 916 (21.3), 903 (100), 431 (32.0), 417 (25.7), 399 (12.6).

CC of fraction 1 (1 g) [(ii), solvent B] afforded 1 and 2 and fraction 2 (1.25 g) gave 3 and 4 (homogeneity of 1-4 checked by HPLC (v), solvents B and C) (characterization of 2 and 4 is in progress).

Compound 1. Colourless needles (372 mg) from aq. EtOH, mp $287-293^{\circ}$, $[\alpha]_D^{15-17} - 30^{\circ}$ (C_5H_5N ; c 1.98). IR ν_{max}^{KBr} cm⁻¹. 3400 (OH), 1710 (>C=O), 989, 922, 902, 870 (intensity 902 > 922, 25R-spiroketal). FDMS m/z (rel. int.): 1087 $[M+K]^+$ (14.7), 1071 $[M+Na]^+$ (100), 1049 $[M+H]^+$ (16.0), 1048 $[M]^+$ (22.5), 939 $[M+Na-132]^+$ (43.6), 916 $[M-132]^+$ (12.4), 909 $[M+Na-162]^+$ (9.9), 886 $[M-162]^+$ (9.0), 754 $[M-132-162]^+$ (10.3), 592 $[M-132-(2\times162)]^+$ (5.5), 430 (1.8), 133 $[xyl+H]^+$

Short Reports 1493

 $-H_2O$]⁺ (17.8), 115 [xyl + H - 2H₂O]⁺ (6.2); ¹H NMR: δ0.67 (6H, m, 19-Me, 27-Me), 1.09 (3H, s, 18-Me), 1.36 (3H, d, 21-Me), 4.85 (1H, d, J = 7 Hz, H-1 of glu), 5.07 (2H, m, H-1 of glu and gal), 5.56 (1H, d, J = 7 Hz, H-1 of xyl); ¹³C NMR: δaglycone: 36.6, 29.5, 79.6, 34.3, 44.3, 28.5, 31.7, 34.6, 55.5, 36.2, 37.9, 212.8, 55.3, 55.9, 31.7, 79.1, 54.2, 16.0, 11.6, 42.5, 13.9, 109.2, 31.7, 29.2, 30.5, 66.9, 17.3 (C-1-C-27); sugar moiety: 102.3, 81.2, 73.1, 79.6, 76.1, 60.6 (galactosyl C-1-C-6), 104.8, 70.7^{ao}, 86.8, 70.4, 78.5, 62.4^b (glucosyl C-1-C-6), 104.8, 75.5, 78.5, 70.9^a, 78.5, 62.9^b (glucosyl C-1-C-6'), 104.8, 75.0, 77.5, 70.7, 67.1 (xylosyl C-1-C-5). (Found: C, 57.16; H, 7.84. C₅₀H₈₀O₂₃ requires C, 57.25; H, 7.63%)

Compound 3. Colourless needles (483 mg) from aq. EtOH, mp 268–271°, $[\alpha]_D^{15-17}$ – 31.7° (C₅H₅N; c 2.20). IR v_{max}^{KBr} cm⁻¹: 3450 (OH), 1712 (>C=O), 980, 920, 899, 860 (intensity 899 > 920, 25R-spiroketal); FDMS m/z (rel. int.); 1219 $[M+K]^+$ (12.2), $1203 [M + Na]^+ (92.3), 1071 [M + Na - 132]^+ (100), 939 [M$ $+ Na - 2 \times 132$] + (44.0), 916 (17.3), 909 (25.8), 886 (15.6), 754 (14.8), 592 (10.0), 431 (19.7), 133 (22.2), 115 (15.9); ¹H NMR: δ0.67 (6H, m, 19-Me, 27-Me), 1.09 (3H, s, 18-Me), 1.36 (3H, d, 21-Me), 4.85 (1H, d, J = 7 Hz, H-1 of glu), 5.10 (3H, m, H-1 of glu, gal and)xyl), 5.56 (1H, d, J = 7 Hz, H-1 of xyl); ¹³C NMR: δ sugar moiety: 102.4, 80.7, 73.1, 79.7, 75.4, 60.6 (galactosyl C-1-C-6), 103.9a, 70.7, 86.8, 70.7, 78.3, 62.1^b (glucosyl C-1-C-6), 104.8^a, 75.4, 77.7, 79.7, 77.2, 62.9^b (glucosyl C-1'-C-6'), 104.8[†], 75.1, 77.7, 70.7, 69.1 (xylosyl C-1-C-5), 106.1†, 75.1, 77.2, 70.7, 67.0 (xylosyl C-1'-C-5'). (Found: C, 55.69; H, 7.61. C₅₅H₈₈O₂₇ required C, 55.93; H, 7.45%.)

Acidic hydrolysis of 1 and 3. Compounds 1 and 3 (20 mg each) were refluxed with 2 M HCl-EtOH (1:1, 10 ml) on a boiling water bath for 3.5 hr to afford the aglycone (hecogenin), mp $262-265^{\circ}$ (MeOH) (lit. [7] mp $262-264^{\circ}$. [α] $_{D}^{20}$ - 3°). IR ν KBr cm⁻¹: 3400 (OH), 1700 (>C=O), 990, 920, 904, 860 (intensity 904 > 920). EIMS: m/z 430 [M] $_{D}^{+}$. The neutralized (Ag₂CO₃) and conc. aq. hydrolysate showed the presence of D-galactose, D-glucose and D-xylose (PC, solvent G, R_f values 0.20, 0.23 and 0.37, respectively). Sugars were estimated at 420 nm.

Partial hydrolysis of 1. Compound 1 (200 mg) in 1 M HCl—nBuOH (1:1, 25 ml) was heated at 70° for 2.5 hr. The BuOH layer was washed with H₂O and evaporated to dryness in vacuo. The residue on CC [(i), solvent D] yielded hecogenin, PS₁ (15 mg), PS₂ (13.5 mg) and PS₃ (16.5 mg). PS₁, PS₂ and PS₃ (2 mg each) on acidic hydrolysis carried as above gave D-galactose. PS₂ and PS₃ hydrolysates also contained D-glucose (PC, solvent G).

PS₂. Colourless plates from aq. MeOH, mp 270-273° (decomp.). ¹³C NMR: δsugar moiety: 102.5, 80.1, 73.4, 72.3, 76.9, 61.0 (galactosyl C-1-C-6), 107.1, 75.5, 78.7, 72.5, 78.5, 63.1 (glucosyl C-1-C-6).

PS₃. Colourless plates from aq. MeOH, mp 296–299° (decomp.), $[\alpha]_0^{20}$ – 23.5° (C₅H₅N; c 0.9). FDMS m/z (rel. int.): 917 [M + H]⁺ (100), 754 (72.1), 593 (23.2), 431 (25.4), 413 (79.3). ¹³C NMR: δsugar moiety: 102.5, 81.0, 73.3, 70.4, 76.7, 60.6 (galactosyl C-1–C-6), 105.2, 71.8, 86.1, 70.4, 77.7^a, 61.7^b (glucosyl C-1–C-6), 106.9, 75.6, 78.5, 71.8, 78.2^a, 63.2^b (glucosyl C-1′–C-6′).

NaIO₄ oxidation of PS₂ and PS₃. PS₂ and PS₃ (3 mg each) were separately mixed with an aq. soln of NaIO₄ (10%, 1.5 ml) and left in the dark at room temp. for 5 days. Excess of the reagent was decomposed by adding ethylene glycol (0.5 ml). Each on usual work-up followed by acidic hydrolysis was checked by PC. The product from PS₃ showed D-glucose only.

Permethylation of 1, 3, PS₁, PS₂ and PS₃. Compounds 1 and 3 (80 mg each), PS₁, PS₂ and PS₃ (7 mg each) were separately

permethylated by Hakomori's method. The products from 1 and 3 were purified by CC [(i), solvent E] to yield 1a (20 mg) and 3a (15 mg), respectively, while from PS₁, PS₂ and PS₃ by prep. TLC [(iii), solvent F; visualizing agent, H₂O].

Compound 1 permethylate (1a). Colourless syrup. IR v KBr cm⁻¹: no OH. (Found: C, 61.36; H, 7.91. C₆₂H₁₀₄O₂₃ requires C, 61.18; H, 8.55%.)

Hydrolysis of 1a and 3a. Compounds 1a and 3a (10 mg each) were separately refluxed with 1 M HCl-MeOH (1:1, 6 ml). The neutralized and conc. hydrolysate from 1a contained (PC, solvent H) 2,3,4,6-tetra-O-methyl-D-glucose, 2,3,4-tri-O-methyl-D-xylose, 2,4,6-tri-O-methyl-D-glucose and Wallenfel's positive 3,6-di-O-methyl-D-glactose (R_G values 1.00, 0.94, 0.76 and 0.47, respectively). Hydrolysate from 3a revealed methylated sugars as above except that at R_G 1.00. An additional spot 2,3,6-tri-O-methyl-D-glucose appeared at R_G 0.83.

Acidic hydrolysis of PS_1 , PS_2 and PS_3 permethylates. Permethylates of PS_1 , PS_2 and PS_3 (3 mg each) were hydrolysed as above and checked by PC (solvent H). The hydrolysate of PS_1 permethylate showed 2,3,4,6-tetra-O-methyl-D-galactose (R_G 0.88), the hydrolysate of PS_2 permethylate contained 2,3,4,6-tetra-O-methyl-D-galactose and Wallenfel's positive 3,4,6-tri-O-methyl-D-galactose (R_G 1.00 and 0.72, respectively) whereas the hydrolysate of PS_3 permethylate additionally carried 2,4,6-tri-O-methyl-D-galacose (R_G 0.76).

Partial hydrolysis of 3. Partial hydrolysis of 3 (180 mg) as carried with 1 gave a mixture of prosapogenins and hecogenin which was purified by CC [(i), solvent A] to afford PS₁ (10 mg), PS₂ (10 mg), PS₃ (13.5 mg) and PS₄ (20 mg).

PS₄. Crystallized as colourless needles from aq. EtOH, mp 286-294°. IR v_{max} cm⁻¹: 3400 (OH), 1711 (>C=O), 989, 922, 902, 870. It was found identical to 1 by mmp, co-TLC [solvent systems EtOAc-EtOH-H₂O (15:5:4) and CHCl₃-MeOH-H₂O (13:7:2)], superimposable IR and permethylation studies.

Molluscicidal test. Compound 1 was submitted to assay against Biomphalaria glabrata by the method of ref. [20].

Acknowledgements—Our thanks are due to Professor K. Hostettmann, Lausanne, Switzerland for molluscicidal testing and CSIR, New Delhi for financial assistance.

REFERENCES

- Aswal, B. S., Bhakuni, D. S., Goel, A. K., Kar, K., Mehrotra, B. N. and Mukherjee, K. C. (1984) *Indian J. Exp. Biol.* 22, 312.
- 2. Grover, S. P. and Bhatkoti, D. C. (1982) Indian J. For. 5, 71.
- Sharma, S. C., Sati, O. P., Sharma, H. C. and Chand, R. (1982) Pharmazie 37, 305.
- Varshney, I. P., Jain, D. C. and Srivastava, H. C. (1981) J. Nat. Prod. 44, 662.
- Varshney, I. P., Jain, D. C. and Srivastava, H. C. (1982) Phytochemistry 21, 239.
- 6. Sharma, S. C. and Sati, O. P. (1982) Phytochemistry 21, 1820.
- 7. Sati, O. P. and Pant, G. (1983) Pharmazie 38, 353.
- Sati, O. P., Pant, G., Miyahara, K. and Kawasaki, T. (1985) J. Nat. Prod. 48, 395.
- 9. Hakomori, S. (1964) J. Biochem. 55, 205.
- 10. Wallenfel, K. (1950) Naturwissenschaften 37, 491.
- 11. Sati, O. P. and Pant, G. (1985) Phytochemistry 24, 123.
- Sharma, S. C., Chand, R., Sati, O. P. and Sharma, A. K. (1983) Phytochemistry 22, 1241.
- Sharma, S. C., Sati, O. P. and Chand, R. (1982) *Phytochemistry* 21 1711.
- Seo, S., Tomita, Y., Tori, K. and Yoshimura, Y. (1978) J. Am. Chem. Soc. 190, 3331.
- 15. Kasai, R., Okihara, M., Asakawa, J., Mizutani, K. and

^{*13}C NMR data: *L* bAssignments are interchangeable between carbons marked with similar sign in a compound.

[†]Assignments are interchangeable between two xyloses.

- Tanaka, O. (1979) Tetrahedron 35, 1427.
- Mahato, S. B., Sahu, N. P., Ganguly, A. N., Kasai, R. and Tanaka, O. (1980) Phytochemistry 19, 2017.
- Eggert, H. and Djerassi, C. (1975) Tetrahedron Letters 42, 3635.
- 18. Klyne, W. (1950) Biochem. J. 47, 41.
- Misra, S. B. and Mohan Rao, V. K. (1960) J. Sci. Ind. Res. 19, 173
- Hostettmann, K., Kizu, H. and Tomimori, T. (1982) Planta Med. 44, 34.

Phytochemistry, Vol. 25, No. 6, pp. 1494-1495, 1986. Printed in Great Britain.

0031-9422/86 \$3.00 + 0.00 © 1986 Pergamon Press Ltd.

NAPHTHOQUINONES FROM JUGLANDACEAE

KIYOICHI HIRAKAWA, ERIKO OGIUE, JIRO MOTOYOSHIYA and MASAO YAJIMA

Faculty of Textile Science and Technology, Shinshu University, Ueda, Nagano 386, Japan

(Received 16 September 1985)

Key Word Index—Pterocarya; Juglans; Juglandaceae; juglone; 3,3'-bijuglone; cyclotrijuglone.

Abstract—The oligomeric juglones isolated from the barks of Juglandaceae plants, *Pterocarya* and *Juglans*, were shown to be 3,3'-bijuglone (8,8'-dihydroxy[2,2'-binaphthalene]-1,1',4,4'-tetrone and unsymmetrical cyclotrijuglone (1,7,16-trihydroxy-5,6,11,12,17,18-trinaphthalenehexone).

INTRODUCTION

It is well known that juglone (5-hydroxy-1,4-naphthoquinone) and hydrojuglone glucoside (4,8-dihydroxy-1naphthalenyl- β -D-glucopyranoside) occur in different parts of Juglandaceae [1]. Other monomeric naphthoquinones have also been found (e.g. 1,4-naphthoquinone [2, 3] and 5,8-dihydroxy-1,4-naphthoquinone [4] from Juglans species). The natural co-occurrence of a monomeric quinone with its oligomers (dimer, trimer and tetramer) has been widely studied, e.g. 7-methyljuglone (ramentacenone) and its oligomers in Ebenaceae and 2methyljuglone (plumbagin) and its oligomers in Droseraceae [1]. However, the oligomers from the quinones which occur among Juglandaceae plants have received little attention. Juglone oligomers, 3,3'-bijuglone (1) [5] and symmetrical cyclotrijuglone (2) [6], have been reported to occur in root-bark of J. regia in one instance only. The present paper is concerned with the isolation and structure elucidation of juglone oligomers from P. rhoifolia Sieboldiana et Zucc. (wingnut, Japanese name Sawagurumi) and J. mandshurica Maxim. var. Sieboldiana Makino (walnut, Japanese name Onigurumi).

RESULTS AND DISCUSSION

The chloroform extracts of the fresh root-bark of P. rhoifolia was chromatographed on silica gel (benzene as eluant) to give in addition to juglone two polar light yellow compounds. The less polar of the two polar compounds was identified as bijuglone (1) by comparison with an authentic sample prepared by addition of juglone and 1,4,5-trihydroxynaphthalene [7]. The ¹H NMR spectrum (CDCl₃) of isolated 1 revealed two singlets of H-3 and H-3' (δ 7.04) and 8- and 8'-OH (δ 11.75). Bijuglone (1) was distinguished from its isomers, 2,2'-bijuglone (3) and 2,3'-bijuglone (4), by ¹H NMR spectroscopy [8, 9]*. It gave a reddish violet colour with aqueous alkali and underwent reversible reduction with sodium dithionite like many other hydroxynaphthoquinones.

The second polar compound was unsymmetrical cyclotrijuglone (5), having hydroxyl groups at the unsymmetrical position. The structure followed from the ¹H NMR spectral data (1- and 16-OH singlet and 7-OH singlet at δ 11.20 and 11.27, respectively, in CDCl₃). The structure of cyclotrijuglone from J. regia had previously been assigned as symmetrical 2 rather than unsymmetrical 5 [6]. More recently, synthetic cyclotrijuglone has been obtained from the addition of juglone to 1,4,5-trihydroxynaphthalene followed by treatment with chloranil. Its structure was assigned as 5 on the grounds that the ¹H NMR spectrum (CDCl₃) of its triacetate showed two singlet signals at δ 2.51 (3H, OAc) and 2.48 (6H, 2OAc) [7]. The ¹H NMR spectrum (CDCl₃) of cyclotrijuglone from

^{*}The chemical shifts (CDCl₃/TMS = 0) for vinyl and hydroxyl protons of 3 and 4, prepared independently by the method of Laatsch [8, 9], are as follows. Compound 3: δ 7.05 (2H, s, H-3 and H-3'), 11.86 (2H, s, 5- and 5'-OH); 4: δ 7.02 (1H, s, H-3'), 7.06 (1H, s, H-3), 11.73 (1H, s, 8'-OH), 11.85 (1H, s, 5-OH).